
Journal of Financial Markets 68 (2024) 100880

A
1
(

C
A
V

A

J
G
G

K
C
T
R
I
D

1

l
w
o
i

i
b
s
I
t
T
i

m
a
d

C
s
o

a

h
R

Contents lists available at ScienceDirect

Journal of Financial Markets

journal homepage: www.elsevier.com/locate/finmar

orporate bond price reversals
lexey Ivashchenko1

U Amsterdam, The Netherlands

R T I C L E I N F O

EL classification:
12
14

eywords:
orporate bonds
rading volume
eversal

nformed trading
ealer inventory

A B S T R A C T

I demonstrate empirically that corporate bond dealers mitigate adverse selection risk by passing
potentially informed transactions to institutional investors. I contrast price reversals following
days with abnormal trading volume across bonds with different information asymmetry. In
informed trading, the part of reversal specific to high-volume days should increase with
information asymmetry. In uninformed trading, there is no such effect. Following high-volume
days when investors provide liquidity, the reversals are consistent with the former case. When
dealers provide liquidity, I observe the latter. The results suggest that the informational content
of bond prices is higher when dealers do not take inventory.

. Introduction

Trading with a better-informed counterparty is a risky business. Indeed, liquidity providers in securities markets may incur
osses when trading with informed traders and seek remuneration to offset such adverse selection risk. This raises the question of
hether all liquidity providers are equal in avoiding transactions with better-informed investors. To address this, I consider the case
f the over-the-counter (OTC) corporate bond market in the United States and two distinct liquidity providers: broker-dealers and
nstitutional investors.

My results suggest that liquidity-providing institutional investors are more likely to be adversely selected than the dealers. That
s to say, bond dealers avoid trading with informed investors. Consider a dealer who is approached by an investor willing to sell a
ond. In such a scenario, the dealer must decide whether to provide liquidity for the transaction herself or to let another investor
upply liquidity. In the first case, the dealer buys the bond and holds it as part of their inventory for an ex ante unknown period.
n the second case, the dealer finds another investor willing to buy the bond. The dealer then uses her balance sheet to transfer
he bond from the seller to the buyer based on prearranged terms, but the bond only stays on the dealer’s book for a few minutes.
he key question here is whether bond prices are equally likely to reveal private information in these two cases. I argue that the

nformation content of prices is higher when investors rather than dealers themselves supply liquidity.
First, assume that there are only two trading motives: private information and liquidity needs. Observed trading volume is the

ixture of volumes generated by each trading motive. Second, how can the prevalent motive from the history of transaction prices
nd volumes be inferred?2 I use a theoretically grounded empirical methodology that links the trading motive to the cross-sectional
ependence between bond information asymmetry and a particular component of the first-order bond return autocorrelation specific
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nswer the question, like Hasbrouck (1991), inapplicable.
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Fig. 1. Bond information asymmetry and the volume-reversal offset.
This figure is a stylized representation of the main empirical result: CtC volume-reversal offsets increase in line with bond information asymmetry, while CtD
offsets do not. This is evidence of occasionally informed bond trading, specifically when customers (CtC) rather than dealers (CtD) provide liquidity.

to days with abnormal trading volume. I call such a component the volume-reversal offset. A positive volume-reversal offset means
that return autocorrelation is higher (equivalently, the reversal is weaker) following days with high trading volume compared to days
with average volume. I argue that, in the cross-section of bonds, the volume-reversal offset must increase with bond information
asymmetry if trading is occasionally information-driven.3 If trading is only liquidity-driven, the cross-section of volume-reversal
offsets is unrelated to information asymmetry.

I exploit this prediction to compare the prevalence of information-driven trading in two distinct types of corporate bond
transactions. The first is liquidity provision by dealers. In such a case, dealers purchase bonds for their inventory and hold them at
least until the next trading day or sell bonds that have been in their inventory at least since the previous trading day. The second
type is liquidity provision by bond investors (also known as ‘‘customer liquidity provision’’). Here, dealers facilitate transactions
between buying and selling investors by holding the inventory only intraday. I call trading volumes attributed to these two liquidity
provision regimes the client-to-dealer (CtD) and the client-to-client (CtC) volume, respectively. I hypothesize that these two types of
trading volumes exhibit different informational content: the CtC volume is more likely to contain information about the fundamental
value of the bond compared to the CtD volume, which is predominantly liquidity-driven. I test this hypothesis by comparing the
cross-sectional dependence of the volume-reversal offset on bond information asymmetry between the CtC and CtD volumes.

My main empirical tests involve regressing the CtC and CtD volume-reversal offsets (estimated bond-by-bond) on information
asymmetry in the cross-section of U.S. corporate bonds. I consider multiple bond- and issuer-specific information asymmetry proxies
and compound information asymmetry indicators, which deliver similar results. I find that the CtC volume-reversal offset increases
in line with information asymmetry in the cross-section of bonds (see Fig. 1). The effect is economically sizeable. For an average-
asymmetry bond, a one standard deviation above-average daily CtC volume takes the expected next day price reversal from the
average level of −1∕3 to close to −1∕4.4 For a bond from the top information asymmetry decile, the effect is 25% stronger. That is,
the CtC offset is the strongest for those bonds in which information-driven trading is the most likely. In contrast, the CtD offset
decreases with information asymmetry. Such a pattern is expected when informed volume loads onto customer liquidity provision
while uninformed volumes are channeled into dealers’ inventory. Economic mechanisms beyond informational trading that link
trading volume and reversal, such as search and bargaining functions, the ‘‘size discount’’ relation, and the bid–ask bounce, would
not explain such results. I also demonstrate that the finding is robust to various definitions of bond returns, trading volumes, and
alternative econometric specifications and that it holds in various bond subsamples. In addition, I derive implications for investment
strategies that capitalize on corporate bond price reversals.

3 Llorente et al. (2002) generate such results in a stylized model of trading a-là Campbell et al. (1993), assuming that the volume of information-driven
rading increases in the strength of the private information signal.

4 An average reversal of −1∕3 means that a day with a 1% price increase is typically followed by a day with a 0.33% price drop.
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I also explore the different types of information that can drive the volume-reversal relation. I find that the CtC volume-reversal
ffset grows twice as fast with information asymmetry immediately before the issuer’s earnings announcements (i.e., when the
nformational motives for trading are the most acute) compared to other trading days. By contrast, CtD volumes appear even less
nformed before earnings announcements than in non-announcement periods. Moreover, for issuers with many bonds outstanding,
show that the link between information asymmetry and volume-reversal offsets exists even within the issuer’s bonds. Hence, the

nformational content of the volume-reversal offset is both issuer- and issue-specific. Relatedly, I show that stock volume-reversal
ffsets have only limited explanatory power for bond volume-reversal offsets, emphasizing the role of bond-specific information in
he analyzed relation.

My paper contributes to several streams of literature. Previous papers have documented that liquidity provision in the corporate
ond market has been shifting from dealer banks, subject to stricter regulatory requirements, to less constrained bond investors,
hich has implications for corporate bond illiquidity, trading costs, and market quality.5 In my paper, however, I introduce a novel

empirical link between adverse selection and non-dealer liquidity provision. In a related paper, Goldstein and Hotchkiss (2020)
discuss how dealers’ capital commitment varies in the cross-section of bonds; in doing so, they find that dealers tend to avoid
holding inventory in riskier and less actively traded bonds. This finding is consistent with both the adverse selection concern and
the search-and-bargaining cost motive for selecting bonds for inventory. I extend the finding of Goldstein and Hotchkiss (2020)
by conducting an analysis of post-trade price patterns that contrasts the information channel with the impact of search frictions.
I find that the realization of adverse selection risk is more likely following large trades in which dealers did not play an active
intermediary role.

The terms of trade in the OTC market are often the outcome of bargaining between dealers and investors. In light of this, Palleja
(2023) constructs a symmetric information OTC search model of bargaining between an investor and a dealer contemplating CtC and
CtD transactions.6 In the model, investors prefer the immediacy of CtD trades over the uncertain delay associated with CtC trades,
although the former is more expensive because of the dealer’s inventory holding cost. Generally, investors make trading decisions
based on their pre-trade preferences and asset holdings; however, as inventory costs rise, CtC trading becomes more popular, all else
being equal. What would happen in a model like that of Palleja (2023) under asymmetric information? I conjecture that a higher
inventory cost due to the adverse selection risk would force dealers to post wider bid-offers, making CtD trading more expensive for
informed investors (given the duration of the private information signal) and pushing the bargaining outcomes towards CtC rather
than CtD trading compared to the symmetric information case. Such a proposition aligns with my empirical findings.

By identifying price and volume patterns that are consistent with the footprint of private information, my paper contributes
to the debate on the presence of information-driven trading in the corporate bond market. Asquith et al. (2013) analyze the
relation between bond short interest and returns and find no evidence of information-based trading either in investment-grade
or in high-yield bonds. Hendershott et al. (2020) use similar data on loaned bonds and conclude that information-driven trading
is present in high-yield bonds but not in the investment-grade universe. In my paper, high information asymmetry bonds are
not necessarily high-yield ones. My sample consists primarily of investment-grade bonds, yet information asymmetry proxies vary
significantly in the sample. Therefore, I find evidence of information-based trading in investment-grade bonds. Meanwhile, Ronen
and Zhou (2013) and Kedia and Zhou (2014) discuss the informational efficiency of the corporate bond markets around corporate
announcements and merger deals. Like Ronen and Zhou (2013), I find the footprint of informed trading in bond transaction prices
around earnings announcements and further link it to customer liquidity provision. Finally, Li and Galvani (2021) highlight bond-
specific informational content of bond return persistence at the monthly frequency. My results, from a different angle, point to
bond-specific information as a driver of higher-frequency bond price fluctuations.

My results also have implications for corporate bond portfolio construction. Chordia et al. (2017) show that a lagged return is a
strong return predictor in the cross-section of bonds. However, corporate bond reversal portfolios have zero or negative Sharpe ratios
after trading cost adjustment (Chordia et al., 2017). I obtain the same result for reversal portfolios constructed on low information
asymmetry bonds. However, I show that reversal portfolios of high asymmetry bonds survive the trading cost adjustment even under
conservative assumptions about transaction costs.

Methodologically, my analysis follows the tradition of Campbell et al. (1993). In a related work, Llorente et al. (2002) investigate
the volume-reversal offset of U.S. stocks. I extend and adapt their motivating theoretical model to apply an empirical framework to
the OTC corporate bond market and make inferences about the exposure of different OTC liquidity providers to adverse selection
risk. I also find that stock and bond volume-return offsets are almost unrelated in the cross-section of firms issuing both stocks and
bonds.

The paper is organized as follows. In Section 2, I lay out my empirical strategy. In Section 3, I discuss the bond sample and the
estimation of the volume-reversal offset, while I discuss the estimates in Section 4. In Section 5, I investigate the key cross-sectional
relation between volume-reversal offsets and information asymmetry. In Section 6, I explore how the results change over time,
around earnings announcements, and among bonds issued by the same firm. In Section 7, I discuss several robustness checks. In
Section 8, I discuss the implications of my results for reversal investment strategies. Concluding remarks are in Section 9.

5 A non-exhaustive list of relevant literature includes Adrian et al. (2017), Bessembinder et al. (2018), Dick-Nielsen and Rossi (2018), Berndt and Zhu (2019),
nd Choi et al. (2023).

6 Duffie et al. (2005) pioneered the literature that analyzes OTC market frictions as the driver of asset illiquidity and prices. Feldhütter (2012) and Friewald
3

nd Nagler (2019), among others, quantify the impact of search and bargaining frictions on corporate bond prices.
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2. Empirical framework

My empirical framework is inspired by the trading model of Llorente et al. (2002), which establishes the cross-sectional link
etween information asymmetry and the volume-reversal offset. An extension of such a model, which I present in Section A of the
nternet Appendix, allows me to further distinguish between volume-reversal offsets arising from occasionally-informed and never-
nformed trading volume. The latter, unlike the former, generates offsets that are virtually unrelated to information asymmetry. I
est empirically for such effects. In Section B of the Internet Appendix, I summarize the intuition in a non-technical way.

My analysis proceeds in two steps. In the first step, I estimate the relation between trading volume and subsequent price reversal
or individual corporate bonds:

𝑅𝑡+1 = 𝛽0 +
(

𝛽1 + 𝛽2CtC volume𝑡 + 𝛽3CtD volume𝑡
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Conditional return autocorrelation

𝑅𝑡 + 𝜖𝑡+1. (1)

In Eq. (1), 𝑅𝑡 and 𝑅𝑡+1 denote total corporate bond returns on trading days 𝑡 and 𝑡+ 1, respectively. CtC and CtD volumes measure
ealer and client liquidity provision. Eq. (1) estimates the price reversal (conditional return autocorrelation) between trading days 𝑡
nd 𝑡+1 as a linear function of the CtC and the CtD trading volume on day 𝑡. I standardize CtC and CtD volumes for individual bonds
o that 𝛽1 is the average volume-day reversal. Following a trading day 𝑡 with one standard deviation above-average CtC volume
and keeping the CtD volume at the average level), the reversal is 𝛽1 + 𝛽2. Hence, 𝛽2 is a measure of the CtC volume-reversal offset,
hat is, the difference in reversal between days with different CtC trading volumes. Likewise, 𝛽3 is the CtD volume-reversal offset.7
estimate Eq. (1) only for bonds that are traded sufficiently often (Section 3 provides the details).

In the second step, I estimate the dependence between first-step estimates 𝛽𝑛 and proxies of information asymmetry in the cross-
ection of individual bonds. The impact of information asymmetry on volume-reversal offsets 𝛽2 and 𝛽3 is of primary interest. If
rivate information is more likely to drive CtC rather than CtD volumes, then 𝛽2 should exhibit a stronger cross-sectional relationship
ith information asymmetry than 𝛽3. This is a key empirical test. A 𝛽2 growing with information asymmetry in the cross-section of
onds, unlike 𝛽3, would identify CtC volumes as more information-rich than CtD volumes.

It should also be noted that economic mechanisms beyond information-driven trading might affect the relation between trading
olume and price reversal; hence, the above identification. The question remains, though, as to whether CtC volumes are uninformed
n practice and if the search and bargaining cost of liquidity provision specific to OTC markets (Duffie et al., 2005) drives the results.
s a hypothetical, a liquidity provider contemplates taking a corporate bond position. Search and bargaining costs would make it
xpensive to offset such a position in the future, even more so if the original position is sizeable and the bond is infrequently traded.
ence, the cost of liquidity provision should increase in trade size and bond trading infrequency (which correlates with typical
easures of information asymmetry). The post-trade price reversal (representing the remuneration of a liquidity provider) should

hen also be stronger for high-asymmetry bonds and following high-volume days. This prediction is the opposite of the private
nformation channel prediction: the post-trade price reversal is less pronounced following the revelation of private information.
ence, search and bargaining costs likely generate a negative relation between information asymmetry and volume-reversal offsets,
hile the adverse selection risk channel implies a positive one.

Moreover, the relation between non-anonymous dealers and investors in OTC markets affects trading costs. In particular, clients
enerating a large amount of trading volume and, hence, revenue for liquidity providers tend to receive tighter bid-offers than clients
rading infrequently and in smaller amounts. Such ‘‘size discounts’’ in OTC trading have been widely discussed in the literature.8
ize discounts translate into positive volume-reversal offsets in (1). Hence, positive values of 𝛽2 and 𝛽3 (which are positive for U.S.
orporate bonds, on average) might be an indication of the relation motives in liquidity provision even in the absence of information-
riven trading. However, there is no obvious or documented link between client-dealer relationship concerns and the dependence
f the volume-reversal offset on information asymmetry in the cross-section of bonds. It is unlikely that liquidity suppliers would
ive the largest size discounts precisely in the riskiest of bonds.

A random arrival of buying and selling investors trading at given bid and offer prices also generates a price reversal even when
rading is purely liquidity-driven. This phenomenon is known as the bid–ask bounce. A bond with wider bid–ask spreads would
xhibit stronger price reversals due to the bid–ask bounce. In my setup, this translates into a more negative 𝛽1 for higher asymmetry
onds (as reported herein in the sample of TRACE bonds). However, a mechanism linking the bid–ask bounce to the cross-section of
olume-reversal offsets has not been documented, and there is no obvious candidate for such a mechanism. In addition, my second-
tage cross-sectional results on the dependence of 𝛽2 and 𝛽3 on information asymmetry hold qualitatively even for information
symmetry proxies that exhibit the lowest correlation with bond bid-offers.

7 I introduce the notion of a CtC/CtD volume-reversal offset for brevity because the ‘‘difference in reversals between high- and low-CtC/CtD-volume days’’ is
cumbersome notation.
8 For instance, Green et al. (2007) and Edwards et al. (2007) quantify size discounts in municipal and corporate bond markets, respectively. Plus, more

ecently, Pintér et al. (2022) demonstrated that the size discount disappears in the U.K. government bond transaction records after controlling for both dealer
4

nd client identities.



Journal of Financial Markets 68 (2024) 100880A. Ivashchenko

i
o

s

Table 1
Summary statistics of the bond-day panel.

Mean Median S.D. Min 5th 25th 75th 95th Max N.Obs.

Issue size, mln $ 992 750 802 9 150 500 1250 2500 15 000 4570902
Maturity, years 8.09 5.50 7.68 1.08 1.50 3.25 9.00 27.08 87.17 4570902
Coupon rate, % 4.94 5.01 1.85 0.45 1.95 3.50 6.12 7.90 15.00 4570902
Rating 7.49 7.00 3.36 1.00 3.00 5.00 9.00 14.00 21.00 4570902
Age, years 4.06 3.08 3.79 0.08 0.33 1.42 5.50 11.25 28.92 4570902
CtC volume, % of size 0.55 0.02 1.98 0.00 0.00 0.00 0.17 2.85 15.70 4570902
−𝛥Inventory, % of size 0.02 0.02 3.51 −19.40 −4.42 −0.19 0.36 4.21 18.48 4570902
CtD volume, % of size 1.50 0.28 3.17 0.00 0.01 0.06 1.24 7.85 19.40 4570902
Realized bond bid–ask, % 1.03 0.64 1.07 0.00 0.09 0.30 1.39 3.39 4.93 2795698
No. mutual fund owners 47.3 40.0 42.2 0.0 0.0 15.0 67.0 129.0 402.0 4570902
No. dealers 37.2 33.0 17.7 1.0 17.0 25.0 45.0 70.0 289.0 4570902
Issuer equity value, bln $ 88.3 49.3 108.4 0.0 2.6 16.3 135.0 258.1 1103.5 4203170
Stock bid–ask, % 0.05 0.03 0.10 0.00 0.01 0.02 0.05 0.16 1.99 4203164
Days to earnings announcement 44.4 44.0 26.3 0.0 4.0 22.0 67.0 85.0 92.0 3450335

The sample period runs from Jan. 4, 2005 to Dec. 31, 2018. Only active trading periods are retained. The issue size is the outstanding notional amount. Rating
is conducted on a conventional numerical scale from 1 (AAA) to 21 (C). The total bond return consists of the change in the clean price and the accrued interest.
The CtC (client-to-client) trading volume is the minimum between total client purchases and total client sales per bond per day. −𝛥Inventory is the difference
between client purchases and client sales. Its absolute value is the CtD (client-to-dealer) trading volume. All trading volumes are expressed in percentages of the
outstanding notional amount. The realized bond bid–ask spread is the difference between volume-weighted average client buy and sell prices, expressed as a
percentage of the daily average price. ‘‘No. mutual fund owners’’ is the number of individual funds that hold the bond as of the bond trading date. ‘‘No. dealers’’
is the number of unique dealers who intermediated trades in the bond in a given month. ‘‘Stock bid–ask’’ is the difference between the closing bid and ask
stock prices of the issuer, in % of the closing mid-price. In Section 6.1, bond trading days that are more than 92 days before the next earnings announcement
are excluded from consideration.

3. Data and measurements

3.1. Data sources

I construct the dataset of corporate bond prices and volumes from Enhanced TRACE tick-by-tick data. The sample is restricted
to USD-denominated, fixed-coupon, not asset-backed, non-convertible corporate bonds. I apply the filters of Dick-Nielsen (2014)
to clean the TRACE data. I calculate daily corporate bond prices as volume-weighted transaction prices within a given day. Bond
characteristics are from Mergent FISD, issuer characteristics—from CRSP and IBES, bond holdings of mutual funds—from CRSP
Mutual Funds, and the data on intermediating dealers—from the academic version of the TRACE dataset.9 I talk in more detail
about the sample in Section C of the Internet Appendix.

3.2. Sample filtering and ‘‘active periods’’

To estimate Eq. (1) for each bond separately, I require a sufficiently long time series of returns and volumes for every bond.
Moreover, to avoid over-fitting, I require at least 60 daily observations per bond. These are the days with at least one dealer-to-client
transaction reported in TRACE; zero-trading days are removed from the sample. However, corporate bonds experience waves of
trading activity, as documented in Ivashchenko and Neklyudov (2018), so the intervals between trading days with non-zero trading
volume might be quite long. Therefore, asking for at least 60 consecutive business days is too restrictive, as very few bonds satisfy
this criterion. Instead, I ask for more than 60 daily observations where every two successive observations are at most three business
days apart.10

For some bonds, more than one sequence of trading days satisfies the criterion above. I call every such sequence an ‘‘active
period’’ and retain all active periods in the sample. I also remove all days in between the active periods from the sample. Estimation
of the volume-return relation is carried out per bond per active period.

Furthermore, I remove from the sample all active periods when a bond was either upgraded from high-yield (HY) to investment-
grade (IG) or downgraded in the opposite direction. Bao et al. (2018) analyze the corporate bond market liquidity around
downgrades and find abnormal price and volume patterns associated with insurance companies selling bonds due to regulatory
constraints. To ensure that downgrade anomalies do not drive my results, I remove all such periods from my sample. I also remove
bonds with less than one year to maturity from the sample. Such bonds are excluded from major bond market indices, which leads
to substantial institutional rebalancing and creates abnormal price patterns that are not my primary focus.

9 The Academic Corporate Bond TRACE Data set has been obtained directly from FINRA under the standard data agreement. It contains masked identifying
nformation about corporate bond dealers. Such information is missing in the Enhanced TRACE dataset available through WRDS. In this paper, the information
n masked dealer identities only feeds into the calculation of bond-specific information asymmetry proxies in Section 3.4.
10 Here, I follow the approach of Bao et al. (2011), who study the illiquidity of corporate bonds on the daily data and allow consecutive observations to be
5

everal days apart.



Journal of Financial Markets 68 (2024) 100880A. Ivashchenko

s
a
o
t
o
a
b

3

a
u
t
c

r

o
I
a

H

Table 1 presents summary statistics of the bond-day panel where only active periods are retained in the sample. My filtered
ample includes around 4.6 million bond-day observations that cover almost 16,000 distinct active periods between 2005 and 2018
nd 7000 different bonds issued by more than 1000 firms. An average bond in the sample is an investment-grade bond with an
utstanding notional amount of around 1 billion USD and a 5% coupon rate, observed four years since issuance and eight years prior
o maturity. Its average daily total return is 2 bps, and the realized bid–ask spread is approximately 1% (in line with the magnitude
f the effective spread estimated in Harris (2015) using proprietary bond transaction data). The bond is held by 47 mutual funds
nd is traded by 37 unique dealers. The sample of active trading periods constitutes around 20% of the entire TRACE corporate
ond records. The excluded bonds are less liquid, riskier, and have smaller outstanding amounts than the sampled bonds.

.3. Volume measures

Each transaction record in TRACE is a report by a bond dealer about an individual bond transaction. The dealer indicates whether
trading counterparty is a client or another bond dealer. To measure two types of aggregate trading volume per bond per day, I

se only TRACE transactions between dealers and clients. A dealer also reports whether she was a buyer or a seller in each such
ransaction. To measure the CtC trading volume, I first compute total daily client purchases from dealers and client sales to dealers;
all it 𝑉 buy

𝑖𝑡 and 𝑉 sell
𝑖𝑡 , respectively, for bond 𝑖 on day 𝑡. The minimum of the two is my measure of the CtC trading volume:

CtC volume𝑖𝑡 = 𝑉 (𝑐)
𝑖𝑡 = min

{

𝑉 buy
𝑖𝑡 , 𝑉 sell

𝑖𝑡

}

.

CtC volume𝑖𝑡 denotes a trading volume that has no impact on aggregate dealers’ inventory in bond 𝑖 at the end of the trading day 𝑡
as compared to day 𝑡 − 1. CtC volume𝑖𝑡 is zero on the days when either 𝑉 buy

𝑖𝑡 or 𝑉 sell
𝑖𝑡 is zero; otherwise it is greater then zero.11

The difference between client purchases and client sales is a negative change in dealers’ inventory:

−Change in aggregate inventory𝑖𝑡 = 𝑉 (𝑠)
𝑖𝑡 = 𝑉 buy

𝑖𝑡 − 𝑉 sell
𝑖𝑡 .

𝑉 (𝑠)
𝑖𝑡 can be either positive or negative. Positive values represent net purchases by clients from dealers and correspond to a decrease

in total broker-dealers’ inventory in bond 𝑖 on day 𝑡. Conversely, negative values of 𝑉 (𝑠) are increases in dealers’ inventory. In Eq. (1),
I consider the absolute value of 𝑉 (𝑠)

𝑖𝑡 , which I call the CtD trading volume12:

CtD volume𝑖𝑡 = |

|

−Change in inventory𝑖𝑡|| =
|

|

|

𝑉 (𝑠)
𝑖𝑡

|

|

|

.

Table 1 shows that the CtD volume is, on average, several times higher than the CtC volume. Notice that a traditional measure of
daily trading volume (excluding inter-dealer transactions), 𝑉 buy + 𝑉 sell, is equal to CtD volume + 2 ⋅ CtC volume.

CtC volume𝑖𝑡 and CtD volume𝑖𝑡, as defined above, treat bonds dealers in their entirety. Assume that on the day 𝑡, clients sold
$10 million worth of bond 𝑖 to dealers and purchased $8 million from dealers. Assume further that these trading volumes represent,
espectively, 1% and 0.8% of the total outstanding amount in bond 𝑖. Then, CtC volume𝑖𝑡 = 0.8%, and CtD volume𝑖𝑡 = 0.2%. The

latter figure indicates that dealers’ inventory in bond 𝑖, aggregated across all dealers, increased by 0.2% of the outstanding amount
n day 𝑡. It could be that $10 million and $8 million were sold to and bought from different dealers, but it is important to note that
do not construct and analyze individual dealer inventory. My focus instead is on the use of aggregate dealers’ balance sheet space
s opposed to client liquidity provision and how both relate to the underlying trading motives.13 On a practical level, this means

that I evaluate CtC volume𝑖𝑡 and CtD volume𝑖𝑡 with a standard academic version of the (Enhanced) TRACE dataset without relying
on individual dealer identities.

3.4. Proxies for information asymmetry

I next use individual issue- and issuer-specific variables and the principal components of different groups of variables to proxy
for the extent of information asymmetry in the cross-section of bonds. Some variables are bond-level proxies: realized bond bid–
ask spread, bond outstanding notional amount, the number of mutual funds that hold the bond, and the number of dealers who
intermediate trades in the bond. Other variables are issuer-level information asymmetry proxies: issuer market capitalization and
stock bid–ask spread. The last two proxies are calculated only for traded companies. I assume that informed trading is more likely
in bonds with wider (stock or bond) bid–ask spreads, fewer mutual fund holders and intermediating dealers, lower outstanding

11 When I estimate Eq. (1), I further standardize CtC and CtD volumes separately for each bond and each active trading period when I estimate Eq. (1).
ence, a zero-CtC-volume observation translates into (−1)× the average CtC volume scaled by the standard deviation of the CtC volume for that bond and that

active trading period.
12 Such an imposed symmetry of return autocorrelation conditional on increases and decreases in dealers’ inventory is a simplification. However, it does

not undermine an alleged dependence of volume-reversal offsets on information asymmetry. An investigation of the asymmetries in conditional price reversals,
though, is beyond the scope of this paper.

13 Trades offsetting within the same day may still represent risky principal transactions. Indeed, in the event that buying and selling clients happen to transact
on the same day with different dealers, I mis-attribute a part of the CtD volume to the CtC one. If within-day offsetting trades are less informed than the rest
of the CtC volume, the mismeasurement reduces the information content of my measure of the CtC volume relative to the (unobserved) true one. Nonetheless, I
find strong support for the higher information content of the CtC volume. Choi et al. (2023) elaborate on the difficulties of evaluating client liquidity provision
in TRACE.
6
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amounts, and that are issued by smaller firms. Below, I justify in more detail the use of these variables as proxies for information
asymmetry.

The number of mutual funds that own the bond is related to the number of buy-side analysts scrutinizing bond valuations
nd the credit quality of the issuer. As in the equity literature, I assume that analyst coverage is negatively related to information
symmetry between investors. Similarly, the number of broker-dealers intermediating trades in the bond is positively related

to sell-side analyst coverage and, hence, negatively related to information asymmetry. The number of active broker-dealers also
measures the competition among them in a given bond. The lack of competition likely affects an average-volume day reversal, 𝛽1
n Eq. (1), similarly to high information asymmetry: prices of bonds traded in a less competitive market should revert more on
verage. However, there is no straightforward explanation as to why bonds with lower dealer competition should exhibit higher
olume-reversal offsets unless low competition among dealers is caused by high information asymmetry in the first place.

Issuer and issue sizes are typical proxies for trade informativeness in the literature. Both are related to a broader investor base
nd, again, more in-depth analyst coverage, which supposedly leads to a higher number of investors who are ready to arbitrage out
ond misvaluations. As Table A4 in the Internet Appendix shows, issue and issuer sizes are indeed positively correlated with the
umbers of intermediating dealers and mutual funds that own the bond.

Stock and bond bid–ask spreads are also classic measures of information asymmetry. In Glosten and Milgrom (1985), the
id–ask spread is positively related to the extent of informed trading. A dealer wants to be compensated ex ante for the risk of being
dversely selected and charges wider spreads to trade riskier securities. There is a confounding non-informational effect of bid–ask
preads on conditional price reversals. The mere existence of bid–ask spreads implies price reversals as in Roll (1984), i.e., the ‘‘bid–
sk bounce’’ effect. Additionally, it implies stronger reversals for bonds with wider spreads (even when, ex post, it transpires that
here is only liquidity trading). Hence, the impact of the bid–ask bounce on the average-day return autocorrelation, 𝛽1 in Eq. (1), is
imilar to the expected effect of information asymmetry. The impact of the bid–ask bounce on 𝛽2 and 𝛽3 in Eq. (1) is unclear because
t depends on whether the effect becomes stronger or weaker with higher trading volumes. Compounding information asymmetry
ndicators constructed later in this section utilize sets of proxies with and without bond bid–ask spreads to address these concerns.
urthermore, in Section 5.2, I discuss the effect of individual proxies on 𝛽𝑖 and demonstrate that it goes beyond what is typically
aptured by realized bid–ask spreads, while in Section 7 I establish the robustness of results when I calculate bond returns for a
imple average of volume-weighted client buy and sell prices. This approach helps to mitigate the effect of the bid–ask bounce, at
east on the days when both buy and sell client trades take place.

My set of information proxies is not exhaustive. In unreported results, I extended it by including additional characteristics at both
he bond level (bond return volatility, yield spread) and issuer level (availability of a single-name CDS contract on the issuer, equity
nalyst disagreement, stock return volatility). Notably, though, these additions did not change the key quantitative or qualitative
esults. Thus, rather than extending the list of individual proxies (all of which are imperfect measures of information asymmetry),
blend the bond and stock characteristics into a single compound information asymmetry index.

.5. Compound information asymmetry indicators (indices)

A compound cross-sectional information asymmetry characteristic serves a dual purpose. First, it mitigates the confounding
mpact of non-information components in individual bond and issuer characteristics on the volume-return coefficients 𝛽𝑛 in the
econd-stage cross-sectional regressions. Second, it streamlines the presentation of results. I test for the impact of information
symmetry on the volume-reversal offsets. It is easier to interpret such a test when information asymmetry is a scalar metric in
he cross-section of bonds.

I construct information asymmetry indices by extracting, in the cross-section of bonds, the first principal components from the
roups of bond-average values of individual asymmetry proxies discussed above.14 In the cross-section, each individual proxy is
tandardized (de-meaned and divided by a cross-sectional standard deviation) before the extraction of the principal components.
he indices and respective groups are as follows:

• PCall: stock and bond bid–ask spreads, (negative) issuer and issue sizes, (negative) numbers of mutual fund holders and
intermediating dealers.

• PCbond: Same as PCall, but issuer-level characteristics (stock bid–ask, issuer size) are excluded.
• PCbond-ex-ba: Same as PCbond, but the bond bid–ask spread is excluded.

ssuer and issue size, as well as the numbers of fund holders and intermediating dealers, are assigned a negative sign to facilitate
he interpretation of extracted principal components. The first principal component loads positively on all (scaled) individual
haracteristics in all three considered sets. For instance, PCbond increases with the average bond realized bid–ask spread and
ecreases with issue size, number of mutual funds, and dealers. Table A3 in the Internet Appendix presents the loadings of principal
omponents on individual characteristics. The table shows that issuer-level characteristics, while having the lowest loadings, remain
ubstantial. For instance, PCall has a loading of 0.24 (the lowest) on a standardized stock bid–ask spread and a loading of 0.55 (the

14 In the baseline specification, individual proxies are averaged for each bond in the same active trading periods in which volume-return coefficients are
stimated. To address a possible confounding effect of the measurement error in the second stage of the empirical analysis, I run multiple robustness checks in
ection 7. Most notably, I demonstrate that the main results of the paper hold when the principal components are extracted from the initial values of individual
7

nformation asymmetry proxies (the values at the beginning of the first active trading period for each bond).
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Table 2
Summary statistics of the estimated volume-return coefficients.

Mean Med. No. > 0 No. < 0 No. > 0* No. < 0* No. Obs.

𝛽1 −0.3345 −0.3489 179 15 702 6 14 277 15 881
𝛽2 0.0687 0.0587 11 146 4735 2651 518 15 881
𝛽3 0.0531 0.0519 10 780 5101 3206 773 15 881

The estimation equation is (2). Each estimated coefficient is per bond per active period. There are at most fifteen active periods
per bond. Returns are total returns between 𝑡 and 𝑡 + 1. Trading volumes are de-meaned and standardized per bond per active
period. Mean and Med. are, respectively, sample average and sample median. ‘‘No. > (<) 0’’ is the number of positive (negative)
coefficients. ‘‘No. > (<) 0*’’ is the number of positive (negative) coefficients significant at a 10% confidence level. The number
of observations is the number of bond-active periods. The sample of estimated volume-return coefficients is truncated at the 1%
and the 99% levels.

highest) on a (negative) standardized issue size. Issue size, meanwhile, has the highest loading across all indices. These first principal
components explain a substantial portion of the variance, ranging from 42% (PCall) to 70% (PCbond-ex-ba). The intuitively interpretable
loadings and the high portion of explained variance discussed above highlight the validity of constructed indicators as compound
cross-sectional information asymmetry proxies.

4. Volume-return relation

4.1. Baseline volume-return coefficients for corporate bonds

I estimate Eq. (1) separately for every bond and every active period, rescaling trading volumes such that 𝛽1 measures the first
return autocorrelation on the average volume days:

𝑅𝑡+1 = 𝛽0 + 𝛽1𝑅𝑡 + 𝛽2𝑅𝑡𝑉
(𝑐)
𝑡 + 𝛽3𝑅𝑡𝑉

(𝑠)
𝑡 + 𝜖𝑡+1, (2)

where 𝑅𝑡+1 denotes the total bond return between day 𝑡 and day 𝑡 + 1; 𝑉 (𝑐)
𝑡 is the CtC trading volume on day 𝑡, standardized15 for

every active period separately; and 𝑉 (𝑠)
𝑡 denotes the CtD trading volume (the absolute value of inventory change) on day 𝑡, also

standardized.
On the days when both the CtC and the CtD trading volumes are at the average level for a given bond in a considered active

period, the first return autocorrelation is 𝛽1. On the days when the CtC volume is one standard deviation above the mean (𝑉 (𝑐)
𝑡 = 1)

and the change in inventory is at the average level (𝑉 (𝑠)
𝑡 = 0), the first return autocorrelation is 𝛽1 + 𝛽2. Conversely, when only the

CtD volume is one standard deviation above the average, the return autocorrelation equals 𝛽1 + 𝛽3. Negative values of 𝛽1 would
mean that prices revert following average volume days, while positive values of 𝛽2 and 𝛽3 would mean that prices tend to revert
less following high volume days. In this section, I present and discuss the estimated volume-return coefficients 𝛽1, 𝛽2, and 𝛽3. Then,
in the next section, I investigate the relation between the coefficients and information asymmetry proxies, the main focus of this
study.

Table 2 provides a snapshot of 𝛽1, 𝛽2, and 𝛽3 estimated for each bond in every active period. To mitigate the impact of extreme
estimates on the second-stage regression, I truncate estimated volume-return coefficients in the sample of active trading periods at
the 1% and the 99% levels. The average bond-active period has a first return autocorrelation of approximately −0.33. In practical
terms, this means that if the price drops today by 100 bps, with both trading volumes at their average levels, the price tends to
increase by 33 bps on the next trading day. Moreover, the average 𝛽2 of 0.07 suggests that, following high CtC volume days, prices
tend to revert less. For instance, if the initial 100 bps price decrease was accompanied by one standard deviation above-average CtC
trading volume, then the next day reversal would be close to one-fourth rather than one-third. Similarly, the average 𝛽3 of around
0.05 suggests that prices also revert following high-CtD-volume days either. Notably, though, the difference between the average
𝛽2 and 𝛽3 is not statistically significant.

At this stage, I cannot infer much from estimated volume-return coefficients 𝛽1, 𝛽2, and 𝛽3. Strongly negative 𝛽1 is a reflection
f the high illiquidity of the corporate bond market, be it due to informational or non-informational frictions. The values of 𝛽2 and
3̂ are close; hence, both types of trading volume contribute similarly to price reversals. Positive 𝛽2 and 𝛽3 can be consistent with
he presence of informed trading but can also reflect relation size discounts (Green et al., 2007).

.2. Comparison with volume-return coefficients for stocks

Stocks and bonds issued by the same issuer are equally exposed to that issuer’s assets value shocks (Merton, 1974). In other words,
f private information about the issuer is revealed in the stock market, it will be revealed at the same time in the bond market.
hus, in the absence of other sources of uncertainty, volume-return coefficients for stocks and bonds should exhibit significant
ommonality. By contrast, bond-specific uncertainty as a prevailing trading motive should result in bond volume-return coefficients

15 De-meaned and divided by the sample standard deviation so that 𝑉 (𝑐) has a zero mean and a unit variance for each bond and each active period.
8
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Fig. 2. Volume-return coefficients for corporate bonds and their issuers’ stocks.
̂𝑒𝑞
1 is the average daily stock price reversal, while 𝛽𝑒𝑞2 is the stock volume-reversal offset. Both are estimated within the same (bond) active trading periods.
aily stock returns and trading volumes are from CRSP. 𝛽1, 𝛽2, and 𝛽3 are corporate bond volume-return coefficients estimated in Eq. (2), averaged across all
onds and all active trading periods of the issuer. Each dot on the scatterplots is a unique issuer. Regression lines are OLS estimates.

hat are distinguishable from those of stocks. To explore which of these scenarios aligns better with the data, I estimate volume-return
oefficients for common stocks issued by the same issuers included in the bond sample.

To do this, I estimate stock volume-return coefficients within previously defined bond active trading periods. I use daily stock
rading data from CRSP. Volume-return coefficients 𝛽𝑒𝑞1 and 𝛽𝑒𝑞2 , per stock per trading period, come from the following OLS model:

𝑅𝑒𝑞
𝑡+1 = 𝛽𝑒𝑞0 + 𝛽𝑒𝑞1 𝑅𝑒𝑞

𝑡 + 𝛽𝑒𝑞2 𝑅𝑒𝑞
𝑡 𝑉 𝑒𝑞

𝑡 + 𝑢𝑡+1, (3)

here 𝑅𝑒𝑞 denotes the daily (dividend-adjusted) stock return and 𝑉 𝑒𝑞 denotes the standardized daily stock trading volume
(turnover).16 For each issuer, it is possible that there are multiple bonds with multiple active trading periods in the sample. In
this section, I average stock and bond volume-return coefficients across all bonds and all active trading periods for each issuer and
compare two sets of volume-return coefficients in the cross-section of issuers (1017 public firms, most of which are large caps).

I find that the average stock price reversal 𝛽𝑒𝑞1 and the volume-reversal offset 𝛽𝑒𝑞2 are orders of magnitude smaller than their
orporate bond counterparts. More specifically, the average 𝛽𝑒𝑞1 in the cross-section of issuers is −1.7 bps (and significantly different

from zero), which is 20 times smaller than the average bond price reversal. This confirms a well-known empirical fact that trading
a corporate bond is, on average, considerably more expensive than trading stocks issued by the same issuer. Furthermore, the
average volume-reversal offset 𝛽𝑒𝑞2 is approximately 0.27 bps Following one standard deviation above-average stock turnover day,
the reversal is around 0.27∕1.7 = 16% less pronounced than following an average-volume day. The respective magnitudes for bonds
are 21% for the CtC volume and the same (16%) for the CtD volume.

Fig. 2 shows that there is little commonality between the cross-sections of same-issuer stock and bond volume-return coefficients.
There is a small positive correlation between 𝛽1 and 𝛽𝑒𝑞1 , which implies that if stock A is on average more expensive to trade than
tock B, then the same applies to the bonds of the same issuer. Crucially, there is no dependence between 𝛽2 and either 𝛽𝑒𝑞1 and 𝛽𝑒𝑞2 .
n other words, stock reversal characteristics do not explain the cross-sectional variation in bond CtC volume-reversal offsets. There
s, however, a slight positive dependence between 𝛽3 and 𝛽𝑒𝑞1 , suggesting that bonds that are relatively cheap to trade with dealers
n high volumes are the ones with less pronounced corresponding stock price reversals.

The findings suggest that stock reversal characteristics have only limited explanatory power for respective bond reversal
arameters. One possible explanation for this limited cross-sectional relation is the presence of credit market frictions, which could
esult in a lack of significant integration between equity and credit markets (e.g., Sandulescu, 2022; Collin-Dufresne et al., 2023). In
ection 6.2, I provide evidence that bond-specific, on top of stock-specific information, is one of the key driving forces of corporate
ond trading.

16 Since stocks are traded anonymously on exchanges, dividing 𝑉 𝑒𝑞 into the dealer and non-dealer liquidity provision is impossible without additional strong
9

assumptions.



Journal of Financial Markets 68 (2024) 100880A. Ivashchenko

w
t

e
o
r

5

a
h
r
s
i
o
a
H
c

d
t

w
c

Table 3
Summary statistics of the cross-section of volume-return coefficients and their predictors.

Mean Median S.D. Min 5th 25th 75th 95th Max N.Obs.

𝛽1 −0.32 −0.34 0.12 −0.63 −0.48 −0.40 −0.25 −0.10 0.07 7212
𝛽2 0.06 0.06 0.12 −0.52 −0.12 0.00 0.12 0.27 0.85 7212
𝛽3 0.05 0.05 0.10 −0.38 −0.12 −0.01 0.11 0.22 0.51 7212
Credit rating 7.78 8.00 3.33 1.00 3.00 6.00 9.00 14.00 21.00 7212
Bond bid–ask, % 1.08 0.77 0.85 0.07 0.22 0.45 1.48 2.91 4.61 7212
No. mutual fund owners 40.6 34.3 38.2 0.0 0.0 8.5 59.2 114.9 381.8 7212
Issue size, bln $ 0.77 0.58 0.69 0.01 0.05 0.35 1.00 2.00 9.00 7212
No. dealers 32.1 28.7 13.0 7.7 17.4 23.3 37.4 58.0 120.7 7212
Issuer size, bln $ 75.4 37.3 105.8 0.0 2.2 12.4 102.6 235.8 930.8 6676
Stock bid–ask, % 0.05 0.03 0.07 0.01 0.01 0.02 0.06 0.16 1.33 6676
PCall 0.00 0.22 1.60 −12.54 −3.09 −0.72 0.99 2.19 6.16 6676
PCbond 0.00 0.21 1.52 −13.81 −2.86 −0.68 0.95 2.16 3.33 7212
PCbond-ex-ba 0.00 0.36 1.45 −14.44 −2.83 −0.51 0.94 1.57 2.27 7212

The sample contains bond averages computed across all active periods in case there is more than one for a given bond. PCall,
PCbond, and PCbond-ex-ba are the first principal components of (standardized) information asymmetry proxies (issuer and issue sizes,
as well as numbers of dealers and mutual funds, are assigned a negative sign, so that higher covariate readings are associated
with more information asymmetry). PCall is extracted from the set of all six information asymmetry proxies. PCbond is the first
principal component of four bond-specific information asymmetry proxies. PCbond-ex-ba further excludes realized bond bid–ask from
the list of factors.

5. Determinants of volume-return coefficients

5.1. Methodology

In this section, I study how the volume-return coefficients 𝛽1, 𝛽2, and 𝛽3 vary with information asymmetry in the cross-section
of bonds. The estimates 𝛽1, 𝛽2, and 𝛽3 discussed in the previous section are per bond and per active period. While there is more
than one active period for every bond in the sample, there are at most 14 active periods per bond. To create the cross-section of
coefficients, I calculate bond averages. Then, I use these averages to fit explanatory linear models. Call 𝛽𝑛,𝑖(𝑘) a column-vector of
estimates (𝑛 = 1, 2, or 3) for individual bonds 𝑖 ∈ {1,… , 𝑁} with credit ratings 𝑘 ∈ {1,… , 21}. As the baseline, I fit the following
model for each 𝑛 (i.e., the cross-section of each volume-return coefficient) separately:

𝛽𝑛,𝑖(𝑘) = 𝑐𝑛 ⋅ Info asymmetry proxy (-ies)𝑛,𝑖 + Rating 𝑘 FE𝑛 + 𝜖𝑛,𝑖, (4)

here, for every 𝑛, 𝜖𝑛,𝑖 is distributed as a zero-mean normal variable, and rating fixed effects (FE) are used as control variables in
he baseline specification (4).17

Table 3 presents summary statistics of the cross-section of estimated volume-return coefficients alongside their potential
xplanatory factors. There are approximately 7,000 individual bonds issued by 1000 firms in the cross-section, more than 90%
f which are issued by public firms. There is substantial variation in both the left-hand side and the right-hand side variables of
egression (4), as Table 3 shows.18

.2. Main results

Table 4 presents estimated regressions (4) of volume-return coefficients on individual information asymmetry proxies. Issuer
nd issue sizes, as well as the numbers of mutual fund owners and intermediating dealers, are assigned a negative sign so that
igher values of all right-hand side variables are associated with higher information asymmetry. Panel A in Table 4 presents the
esults for 𝛽1. Note that all information asymmetry proxies have a significantly negative impact on 𝛽1 if included in the regression
eparately. In a joint model 7, bond-specific information asymmetry proxies maintain significantly negative loadings. However,
n a joint model 8 for public issuers, only the issuer’s stock bid–ask spread flips the sign to positive. These results suggest that,
n average, price reversals become more pronounced (𝛽1 becomes more negative) for bonds characterized by higher information
symmetry (i.e., bonds with fewer fund owners and intermediating dealers, lower issue and issuer size, and higher bid–ask spread).
owever, it is important to note that the results concerning 𝛽1 are also consistent with explanations beyond the private information
hannel.

Panel B in Table 4 presents the results for 𝛽2. Recall that a higher 𝛽2 indicates a stronger volume-reversal offset following
ays characterized by substantial trading among investors where dealers do not hold any additional inventory by the end of the
rading day. In Panel B in Table 4, all bond-specific information asymmetry proxies enter the models for 𝛽2 significantly positively

17 The model in the Internet Appendix A shows that a tested cross-sectional relation between volume-return coefficients and information asymmetry holds
hen bond riskiness remains constant. Rating fixed effects in this second-stage model control for bond riskiness. The results are quantitatively similar when

redit ratings are replaced in the second-stage regression with realized bond return volatility (unreported).
18
10

Table A4 in the Internet Appendix presents cross-sectional correlations of information asymmetry proxies.
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Table 4
Cross-sectional regressions of 𝛽1, 𝛽2, and 𝛽3 on individual information asymmetry proxies.

(A) Models for 𝛽1
(1) (2) (3) (4) (5) (6) (7) (8)

Bond bid–ask −0.038∗∗∗ −0.011∗∗∗ −0.016∗∗∗

(0.002) (0.002) (0.002)
–No. funds −0.062∗∗∗ −0.032∗∗∗ −0.035∗∗∗

(0.002) (0.003) (0.003)
–Issue size −0.063∗∗∗ −0.029∗∗∗ −0.025∗∗∗

(0.002) (0.003) (0.004)
–No. dealers −0.039∗∗∗ −0.009∗∗ −0.008∗∗

(0.002) (0.003) (0.004)
–Issuer size −0.037∗∗∗ −0.009∗∗∗

(0.006) (0.002)
Stock bid–ask −0.009∗∗ 0.009∗∗∗

(0.004) (0.002)

Rating FE YES YES YES YES YES YES YES YES
Observations 7,212 7,212 7,212 7,212 6,676 6,676 7,212 6,676
R2 0.128 0.301 0.299 0.139 0.080 0.035 0.347 0.371

(B) Models for 𝛽2
(1) (2) (3) (4) (5) (6) (7) (8)

Bond bid–ask 0.009∗∗∗ 0.007∗∗∗ 0.004
(0.002) (0.002) (0.002)

–No. funds 0.011∗∗∗ 0.001 0.002
(0.002) (0.002) (0.002)

–Issue size 0.013∗∗∗ 0.005∗∗ 0.005∗∗

(0.002) (0.002) (0.002)
–No. dealers 0.012∗∗∗ 0.008∗∗∗ 0.008∗∗∗

(0.001) (0.002) (0.002)
–Issuer size 0.001 −0.005

(0.002) (0.003)
Stock bid–ask −0.002 −0.004∗∗

(0.002) (0.002)

Rating FE YES YES YES YES YES YES YES YES
Observations 7,212 7,212 7,212 7,212 6,676 6,676 7,212 6,676
R2 0.010 0.013 0.015 0.014 0.004 0.005 0.020 0.017

(C) Models for 𝛽3
(1) (2) (3) (4) (5) (6) (7) (8)

Bond bid–ask −0.026∗∗∗ −0.029∗∗∗ −0.025∗∗∗

(0.002) (0.002) (0.002)
–No. funds −0.005∗∗ 0.011∗∗∗ 0.009∗∗∗

(0.002) (0.002) (0.003)
–Issue size −0.004∗∗ −0.006∗∗ −0.007∗∗

(0.002) (0.002) (0.003)
–No. dealers 0.007∗∗∗ 0.007∗∗∗ 0.007∗∗∗

(0.002) (0.002) (0.002)
–Issuer size 0.010∗∗∗ 0.011∗∗∗

(0.002) (0.002)
Stock bid–ask −0.008∗∗ −0.001

(0.004) (0.004)

Rating FE YES YES YES YES YES YES YES YES
Observations 7,212 7,212 7,212 7,212 6,676 6,676 7,212 6,676
R2 0.072 0.018 0.017 0.020 0.026 0.025 0.081 0.075

Each model uses a fixed-effects estimator with rating-clustered standard errors (in parentheses). The regressors are standardized
in the cross-section. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

when included separately (models 1 to 4). By contrast, the loadings on issuer-specific proxies (issuer size and stock bid–ask) are
insignificant (models 5 and 6). In joint models 7 and 8, only the stock bid–ask spread becomes significantly negative. Otherwise, the
results suggest that higher-asymmetry bonds exhibit stronger CtC volume-reversal offsets. Also of note is that, as shown in models
7 and 8, the effects of the issue size and the number of intermediating dealers on 𝛽2 extend beyond the impact of the realized bond
id–ask, which would likely not be the case if the variation in the cross-section of 𝛽2 is solely due to the bid–ask bounce.

Panel C in Table 4 presents the regression results for 𝛽3. The interpretation of 𝛽3 is analogous to 𝛽2, but now the focus is
hifted to the CtD volume-reversal offset. Unlike for 𝛽 , I do not expect to find any particular dependence of 𝛽 on information
11
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Table 5
Cross-sectional regressions of 𝛽1, 𝛽2, and 𝛽3 on information asymmetry indices.

𝛽1 𝛽2 𝛽3
(1) (2) (3) (4) (5) (6) (7) (8) (9)

PCall −0.043∗∗∗ 0.007∗∗∗ −0.003∗

(0.001) (0.002) (0.001)
PCbond −0.044∗∗∗ 0.010∗∗∗ −0.005∗∗∗

(0.001) (0.001) (0.001)
PCbond-ex-ba −0.044∗∗∗ 0.010∗∗∗ −0.001

(0.001) (0.001) (0.001)

Rating FE YES YES YES YES YES YES YES YES YES
Observations 6,676 7,212 7,212 6,676 7,212 7,212 6,676 7,212 7,212
R2 0.348 0.342 0.322 0.012 0.018 0.017 0.022 0.021 0.016

Models (1)–(3) are for 𝛽1, models (4)–(6) are for 𝛽2, and models (7)–(9) are for 𝛽3. Each model uses a fixed-effect estimator with
rating-clustered standard errors (in parentheses). ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels,
respectively.

Fig. 3. Expected values of volume-return coefficients.
The calculations are based on models with PCbond from Table 5. On the x-axes, from left to right, are the percentiles of PCbond, from the 10th (‘‘Low’’ information
symmetry) to the 90th (‘‘High’’ information asymmetry). The credit rating remains fixed at the BBB level. The solid lines are point estimates, while the shaded
reas around them are 95% confidence bands.

symmetry because dealers would rather pass high-asymmetry bonds to other investors and not hold excess inventory in bonds with
ess transparent valuations.

Panel C in Table 4 shows that there is indeed no clear-cut dependence of 𝛽3 on information asymmetry. For instance, bond bid–ask
pread, the (negative) number of mutual fund bond owners, and the (negative) issue size have significantly negative loadings in
odels 1–3 (which is the opposite to what I find for 𝛽2), while the (negative) number of dealers has a significantly positive loading

as for 𝛽2). In joint models 7 and 8 as well, there are both positive and negative loadings on the variables of interest.
Individual right-hand side variables in Table 4 are noisy measures of information asymmetry. The interpretation of the resulting

ffect on volume-return coefficients is ambiguous when all individual proxies are included in the regressions, as in models 7 and
. To better summarize the relation between information asymmetry and volume-return coefficients, I regress 𝛽1, 𝛽2, and 𝛽3 on
ompound information asymmetry indicators (indices). These are the first principal components extracted from different sets of
nformation asymmetry proxies in the cross-section of bonds. The regression models resemble those in (4).

Table 5 presents the estimates. In models 1–3, I regress 𝛽1 on three information asymmetry indices PCall, PCbond, and PCbond-ex-ba.
n all three regressions, the coefficients of interest are close to −0.04 and are significant. Models 4–6, meanwhile, confirm that 𝛽2
ncreases in line with information asymmetry. Bonds with greater information asymmetry tend to have larger CtC volume-reversal
ffsets. The size of this effect is relatively consistent across different information asymmetry indices. Finally, models 7–9 suggest
hat the relation between 𝛽3 and information asymmetry is either negative or absent.19

In Fig. 3, I plot the relations between 𝛽𝑛 and PCbond, as reported in Table 5. The left panel of the figure displays the average
alues of 𝛽1 across percentiles of PCbond. These values indicate a monotonic decrease, ranging from −0.25 for the bonds with little

19 Table A6 in the Internet Appendix shows that the negative relation between 𝛽3 and PCbond pertains to both inventory-decreasing and inventory-increasing
CtD volumes. For the former, the relationship is stronger, suggesting that the cost of dealer liquidity provision is higher when investors purchase rather than
12

sell bonds. One explanation for this is that it is necessary to search for a required bond (if the dealer does not have one), which comes at an extra cost.
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information asymmetry (10th percentile of PCbond) to almost −0.4 for the bonds with high asymmetry (90th percentile of PCbond).
Moreover, the middle panel in the figure reveals an additional impact of high CtC volumes on next-day reversals. The average values
of 𝛽2 exhibit a monotonic increase, ranging from 0.05 for low-asymmetry to almost 0.09 for high-asymmetry bonds. Finally, the right
panel demonstrates that the predicted 𝛽3 is less sensitive to the degree of information asymmetry than 𝛽2 and that it decreases from
0.06 to 0.04 as the degree of information asymmetry rises. This pattern of results, where the relation between 𝛽2 and information
asymmetry is positive and that between 𝛽3 and information asymmetry is negative, corroborates the hypothesis that the information
ontent of bond prices on high-CtC-volume days differs from that on high-CtD-volume days.

. Announcement, issuer, and time effects in volume-return coefficients

In this section, I extend the empirical evidence along several dimensions. I modify my baseline methodology to study how
olume-return coefficients vary across time, within the issuer, and around corporate announcements.

.1. Pre-announcement effects

Information trading is not constant over time and is likely to be more intense around earnings announcements (Dechow
t al., 2014). Therefore, one should expect to find a stronger dependence between the CtC volume-reversal offset and information
symmetry immediately before earnings announcements. I test for such an effect using the following modification of my baseline
ethodology. I modify the volume-return relationship (2) to separate days close to quarterly earnings announcements from all other

rading days:

𝑅𝑡+1 = 𝛽0 + 𝛽1𝑅𝑡 + 𝛽2𝑅𝑡𝑉
(𝑐)
𝑡 + 𝛽3𝑅𝑡𝑉

(𝑠)
𝑡 + 𝛽4𝑅𝑡𝑉

(𝑐)
𝑡 1EA

𝑡 + 𝛽5𝑅𝑡𝑉
(𝑠)
𝑡 1EA

𝑡 + 𝜖𝑡+1. (5)

In Eq. (5), 1EA
𝑡 is a dummy variable that takes the value of 1 if, starting from day 𝑡, there is at least one and at most ten days

before the following quarterly earnings announcement for a given bond issuer (otherwise, the dummy is zero). This adjustment
changes the interpretation of the volume-return coefficients. In this context, 𝛽1 + 𝛽2 is the average reversal following a far-from-
announcement trading day 𝑡 with the CtC volume one standard deviation above average for that bond and that active period. For

close-to-announcement trading day 𝑡 with the same CtC volume, the average reversal is 𝛽1 + 𝛽2 + 𝛽4. Similarly, following a CtD
olume one standard deviation above average, the value 𝛽5 measures the difference in average reversals between days close to and
istant from earnings announcements.

I estimate Eq. (5) for the same subset of individual bonds issued by public firms and the same active trading periods as those
sed in Section 5. As before, the distributions of estimated volume-return coefficients (including 𝛽4 and 𝛽5 here) across bonds and
ctive trading periods are truncated at the 1st and 99th percentiles to limit the impact of extreme observations on the second-stage
esults. In Table A7 in the Internet Appendix, I summarize the cross-section for the second-stage analysis of this section. The table
hows that there is little difference compared to the cross-section in Section 5. More specifically, the cross-sectional averages of 𝛽1,
2̂, and 𝛽3 are −0.31, 0.06, and 0.05, respectively (virtually unchanged from the baseline analysis). The average values of 𝛽4 and 𝛽5
re, respectively, 0.03 and 0.02. For the second stage, I use the same regression model (4) as that used in the previous analysis.

Panel A in Table 6 presents the results of the regressions of volume-return coefficients 𝛽1–𝛽5 on the information asymmetry
ndex PCbond with credit rating fixed effects. In the interest of clarity, I omit the results for other information asymmetry indices,
ut they are quantitatively similar. For 𝛽1, I find almost the same negative loading on PCbond as in the baseline case in Table 5. The
igher the information asymmetry, the stronger the average bond price reversal is. For 𝛽2 and 𝛽4, these coefficients offer insights
nto the information content of CtC volume-reversal offsets on days that are distant from (𝛽2) and close to (𝛽4) quarterly earnings
nnouncements. The results reveal significantly positive loadings on PCbond for both 𝛽2 and 𝛽4. However, 𝛽4 exhibits a loading nearly
wo and a half times greater than that of 𝛽2. This indicates that the information content of CtC trades is the highest near earnings
nnouncements, as I expected. Note too that the respective estimate in Table 5 is 0.01, which is between 0.007 and 0.018 (info
symmetry loadings for 𝛽2 and 𝛽4, respectively) in Panel A of Table 6.

Similar to the results for 𝛽2 and 𝛽4, there is a stark difference between the CtD volume-reversal offset during periods far from
𝛽3) and close to (𝛽5) earnings announcements. Panel A in Table 6 shows that 𝛽3 is unrelated to PCbond: there is no evidence of
nformation-driven client-to-dealer trading even far from earnings announcements. In regard to near announcements, the table
hows that 𝛽5 is negatively related to PCbond. This contradicts the expectation that information-driven trading in client-to-dealer
ransactions would lead to an increase in 𝛽5 with rising information asymmetry. Instead, the observed negative relation aligns with
he absence of informed client-to-dealer trading in the run-up to earnings announcements.

In Panel B of Table 6, I explore how 𝛽1–𝛽5 differ across positive and negative earnings announcements. I start from the same cross-
ection of volume-return coefficients as in Panel A but separate active trading periods with only positive or negative announcements
s guided by the IBES Standardized Unexpected Earnings (SUE). This leaves me with slightly less than half of the cross-section, with
he majority of observations corresponding to trading periods with positive-only announcements. The regressions for 𝛽2 and 𝛽4
ield quantitatively similar loadings on PCbond, but the effect is slightly stronger and more significant for positive announcements.
his result suggests that CtC volumes are more likely to be informed prior to unexpectedly positive than negative announcements.
possible explanation for this is that there is a lower cost of taking a long rather than a short corporate bond position for an

nformed investor. For the CtD volume-reversal offsets, 𝛽3 and 𝛽5, the (negative) relation with PCbond appears to be stronger prior to
egative than positive announcements. This suggests that client-to-dealer volumes are least informative before negative information
13

isclosures.
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Table 6
Cross-sectional regressions of extended volume-return coefficients on information asymmetry indices.

(A) All active trading periods with announcements

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5

PCbond −0.046∗∗∗ 0.007∗∗∗ −0.001 0.018∗∗∗ −0.012∗∗∗

(0.001) (0.001) (0.001) (0.006) (0.004)

Rating FE YES YES YES YES YES
Observations 5,054 5,054 5,054 5,054 5,054
R2 0.356 0.011 0.016 0.005 0.006

(B) Trading periods with only positive or negative announcements

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5
Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg

PCbond −0.048∗∗∗ −0.044∗∗∗ 0.008∗ 0.007 −0.002 −0.024∗∗∗ 0.040∗∗ 0.030 −0.019∗∗ −0.045
(0.001) (0.012) (0.004) (0.014) (0.003) (0.007) (0.015) (0.059) (0.008) (0.035)

Rating FE YES YES YES YES YES YES YES YES YES YES
Observations 2,041 245 2,041 245 2,041 245 2,041 245 2,041 245
R2 0.282 0.218 0.017 0.059 0.016 0.095 0.012 0.108 0.010 0.074

Volume-return coefficients 𝛽1–𝛽5 are estimated as in (5). Panel A presents the results for all active trading periods with earnings
announcements. Panel B excludes active periods characterized by both positive and negative earnings surprises, focusing on the
periods with solely positive or negative announcements. PCbond is the first principal component extracted from the cross-section
of standardized bond-specific information asymmetry proxies (the number of fund owners, intermediating dealers, and the issue
size are assigned a negative sign). Higher values of PCbond are associated with higher information asymmetry. Each model uses
a fixed-effect estimator with rating-clustered standard errors (in parentheses). ***, **, and * indicate statistical significance at
the 1%, 5%, and 10% levels, respectively.

Table 7
Cross-sectional regressions of 𝛽1, 𝛽2, and 𝛽3 on information asymmetry for issuers with many
bonds outstanding.

𝛽1 𝛽2 𝛽3

PCbond −0.038∗∗∗ 0.013∗∗∗ −0.006∗∗∗

(0.001) (0.002) (0.002)

Rating, Issuer FE YES YES YES
Issuer-clustered SE YES YES YES
Observations 3,516 3,516 3,516
R2 0.440 0.121 0.123

The cross-section of bonds is restricted to issuers with at least 15 outstanding bonds. Each model
uses a fixed effects estimator with rating and issuer fixed effects. Standard errors (in parentheses)
are issuer-clustered. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels,
respectively.

6.2. Within-issuer effects

Some firms have many outstanding bonds at any given point in time. These bonds may differ in terms of coupon rates, maturity,
embedded options, and other characteristics. I investigate how volume-return coefficients differ across bonds of the same issuer.
In Table 7, I present the estimates produced by a modification of model (4) only for firms with more than 15 outstanding bonds.
On top of credit rating fixed effects, I include issuer fixed effects in the regression models. Thus, Table 7 shows the within-firm
dependence of volume-return coefficients on information asymmetry.

I find that the signs of the impact of information asymmetry on 𝛽1, 𝛽2, and 𝛽3 hold for the bonds of the same issuer. In the
ross-section of bonds, 𝛽1 and 𝛽3 decrease in information asymmetry while 𝛽2 increases. The loadings on PCbond in Table 7 are
imilar in size to those in Table 5 (without issuer fixed effects).

These results suggest that private information held by some investors extends beyond both the issuer level (which is most
ikely private news about the issuer’s credit quality) and the bond level.20 The bond-level information can be, for instance, private
nowledge about the liquidity trades of other investors, which yields a better estimate of price pressures and subsequent price
eversals. It can also be private knowledge about the exercise probability of embedded options. Most bonds in my sample are callable,
eaning that issuers have a right to redeem them at pre-specified dates before they reach maturity. The decision to exercise this

all option can impact a bond’s duration and, consequently, its risk profile. Therefore, possessing superior knowledge about the
ikelihood of an early call can provide an advantage in predicting bond returns ahead of call announcements.

20 Addressing this point, Table A5 in the Internet Appendix presents the results of the regressions of the cross-section of 𝛽𝑒𝑞1 and 𝛽𝑒𝑞2 of Fig. 2 on the issuer-level
14

information asymmetry. I find little evidence of information-driven trading in common stocks of bond issuers within bond-specific active trading periods.
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Table 8
Regressions of 𝛽1, 𝛽2, and 𝛽3 on information asymmetry indices in a bond-quarter panel.

(A) Full sample

𝛽1 𝛽2 𝛽3

PCbond −0.049∗∗∗ 0.008∗∗∗ −0.007∗∗

(0.002) (0.001) (0.003)

Rating FE YES YES YES
Time FE YES YES YES
Observations 78,332 78,332 78,332
R2 0.179 0.006 0.014

(B) Pre- and post-GFC subsamples

𝛽1 𝛽2 𝛽3
Pre-GFC Post-GFC Pre-GFC Post-GFC Pre-GFC Post-GFC

PCbond −0.063∗∗∗ −0.048∗∗∗ 0.010∗∗ 0.008∗∗∗ −0.018∗∗ −0.005∗∗

(0.004) (0.003) (0.004) (0.001) (0.007) (0.002)

Rating FE YES YES YES YES YES YES
Observations 12,263 59,610 12,263 59,610 12,263 59,610
R2 0.148 0.187 0.009 0.005 0.029 0.011

In Panel A, the sample runs from Jan. 2005 to Dec. 2018. In Panel B, the pre-GFC subsample runs from Jan. 2005 to Jun. 2008,
and the post-GFC sample—from Jan. 2010 to Dec. 2018. Each model is a fixed-effect estimator with rating-quarter double-clustered
standard errors (in parentheses). ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Fig. 4. Time fixed effects for volume-return coefficients.
The fixed effects are extracted from the models presented in Panel A of Table 8.

6.3. Time-varying volume-return coefficients

The evidence thus far is based on a dataset spanning from 2005 to 2018. However, the volume-return coefficients may not be
persistent over time. Thus, I re-estimate Eq. (2) for individual bonds within each calendar year-quarter. In this section, I define an
active period as a sequence of at least 40 trading days (days with non-zero trading volume) within a calendar quarter where every
two consecutive trading days are at most three business days apart. This ensures that there is a unique active trading period (if any)
per bond per calendar quarter. Therefore, I obtain bond 𝑖 – year-quarter 𝑞 panels of volume-return coefficients 𝛽1,𝑖,𝑞 , 𝛽2,𝑖,𝑞 , and 𝛽3,𝑖,𝑞 .

then explain the panels of volume-return coefficients with the fixed effects models that are analogous to (4) up to the inclusion of
ear-quarter fixed effects.
15
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Table 8 presents the second-stage estimates. Panel A shows the results of fitting rating-year-quarter fixed-effects models. The
oadings on PCbond have the same signs as in the cross-sectional estimation (𝛽1 and 𝛽3 decrease with information asymmetry, while
2̂ increases). The point estimates are also close to the previously obtained values. Fig. 4 presents time fixed effects extracted from
he models in Panel A. It transpires that 𝛽1 and 𝛽2 are stable over time (the time series of both variables do not contain a unit root
ccording to conventional tests), while the level of 𝛽3 drops considerably around the GFC, from 0.08 to 0.03 on average. This result
s in line with the evidence of a reduced risk-bearing capacity of dealer banks post-GFC (e.g., Adrian et al., 2017). Pre-GFC, bond
ealers were more willing to accept the risk of being adversely selected and bond prices were more likely to move against dealers
ollowing large CtD trades than post-GFC. Panel B presents the estimates from the second-stage regression for pre- and post-GFC
eriods separately. I find that the dependence of 𝛽2 on information asymmetry does not differ much in these two subsets.

. Robustness

I conduct several robustness tests to validate the main empirical findings about the dependence of 𝛽2 and 𝛽3 on information
symmetry. Below, I summarize the modifications made to the baseline methodology and provide the results of these robustness
ests.

• Log-clean-price return in the first-stage model. I use the log-return based on the clean bond transaction price (without accrued
interest) instead of the total return as the left-hand side variable in Eq. (2). The return is thus unaffected by additional accrued
interest when an active trading period consists of non-consecutive days.

• Log-volumes in the first-stage model. I apply a log(𝑥 + small constant) transformation to trading volumes before standardizing
them per bond per active period. Therefore, 𝑉 (𝑐) and 𝑉 (𝑠) in Eq. (2) become standardized log-volumes. This helps to mitigate
the impact of the largest trades on 𝛽2 and 𝛽3.

• One-hour roundtrip volumes. I alternatively evaluate the CtC volume 𝑉 (𝑐) as a total daily volume of transactions of equal size
that were offset within one hour. Such a metric avoids counting transactions that could have been offset from the natural
order flow later in the day. However, such a metric might be an underestimation of the CtC volume (as, for instance, in the
case when a dealer offsets a $1 million buy order with two $0.5 million sell orders).

• The simple average of the volume-weighted buy and sell prices instead of the VWAP. To make the time series of individual bond
prices less exposed to the bid–ask bounce, I take a simple average of the volume-weighted buy and sell prices rather than
VWAPs (whenever the CtD volume is above zero).

• Exclusion of retail-sized trades. Small trades in corporate bonds are priced unfavorably (Edwards et al., 2007). Thus, the reversal
in bond prices may be due to the prevalence of retail-sized transactions on certain days. To control for such an effect, I
remove all trades smaller than either $10,000 or $100,000 in notional value. With either cut-off, the sample gets smaller and
concentrates on more liquid bonds.

• Exclusion of retail notes. About 7% of the sample is retail notes. To assess whether the presence of retail notes introduces a
possible bias, I remove them from the sample and re-run the baseline model on the sample that does not contain retail notes.

• Market return in the first-stage model. I add the market return as a linear term to the right-hand side of Eq. (2):

𝑅𝑡+1 = 𝛽0 + 𝛽1𝑅𝑡 + 𝛽2𝑅𝑡𝑉
(𝑐)
𝑡 + 𝛽3𝑅𝑡𝑉

(𝑠)
𝑡 + 𝛽mkt𝑅mkt

𝑡 + 𝜖𝑡+1.

The market is a size-weighted basket of all corporate bonds in the sample. The inclusion of market returns corrects for a
possible omitted-variable bias in 𝛽𝑛.

• Trading volumes in the first-stage model. I add 𝑉 (𝑐) and 𝑉 (𝑠) as linear terms on the right-hand side of Eq. (2):

𝑅𝑡+1 = 𝛽0 + 𝛽1𝑅𝑡 + 𝛽2𝑅𝑡𝑉
(𝑐)
𝑡 + 𝛽3𝑅𝑡𝑉

(𝑠)
𝑡 + 𝛾𝑉 (𝑐)

𝑡 + 𝛿𝑉 (𝑠)
𝑡 + 𝜖𝑡+1.

This potentially corrects for an omitted-variable bias.
• Proxy for the lagged inventory in the first-stage model. Dealers’ inventory might affect the relation between information asymmetry

and volume-return coefficients. To control for such inventory-driven price pressure, I add a proxy for aggregate dealers’
inventory 𝐼𝑡 =

∑10
𝑗=1

(

𝑉 sell
𝑡−𝑗 − 𝑉 buy

𝑡−𝑗

)

to model (2):

𝑅𝑡+1 = 𝛽0 + 𝛽1𝑅𝑡 + 𝛽2𝑅𝑡𝑉
(𝑐)
𝑡 + 𝛽3𝑅𝑡𝑉

(𝑠)
𝑡 + 𝜉𝑅𝑡𝐼𝑡 + 𝜖𝑡+1.

• Control for inter-dealer turnover in the first-stage model. To ensure that the omission of inter-dealer volume (which is allegedly
uninformative) from Eq. (2) does not affect my key result, I add standardized inter-dealer volume 𝑉 (𝑑) to the model:

𝑅𝑡+1 = 𝛽0 + 𝛽1𝑅𝑡 + 𝛽2𝑅𝑡𝑉
(𝑐)
𝑡 + 𝛽3𝑅𝑡𝑉

(𝑠)
𝑡 + 𝜅𝑅𝑡𝑉

(𝑑)
𝑡 + 𝜖𝑡+1.

• Information asymmetry indices extracted from initial bond characteristics. The averaging of bond characteristics across active
periods for individual bonds introduces some measurement error to the right-hand side of Eq. (4). To limit its impact on
the second-stage estimates, I use observed initial values (i.e., values at the beginning of the first active trading period) of
information asymmetry proxies rather than time series averages for individual bonds.

• Weighted second-stage regression. In the first-stage regression, volume-return coefficients are estimated with varying precision. I
assign higher weights to more precise estimates to limit the impact of high-variance estimates of 𝛽𝑛 on the second-stage results.
16

The weights are the inverse variance of the first-stage estimates.
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Table 9
Robustness tests for the regressions of volume-return coefficients on information asymmetry.

𝛽1 𝛽2 𝛽3
(1) (2) (3)

A. Different inputs in the 1st stage

Log-clean-price return −0.041*** 0.010*** −0.006***
(0.001) (0.001) (0.001)

Log-volumes −0.043*** 0.008*** −0.006***
(0.001) (0.001) (0.002)

1-hour roundtrip volumes −0.034*** 0.009*** 0.004**
(0.002) (0.001) (0.002)

Avg. of VW buy and sell prices −0.048*** 0.049*** −0.001
(0.004) (0.011) (0.002)

Trades less than $10k excluded −0.046*** 0.032*** 0.007***
(0.002) (0.007) (0.001)

Trades less than $100k excluded −0.034*** 0.009** 0.005***
(0.002) (0.004) (0.001)

Retail notes excluded −0.045*** 0.004*** 0.002
(0.001) (0.001) (0.001)

B. Different models in the 1st stage

Market return added −0.029*** 0.011*** −0.005***
(0.001) (0.001) (0.001)

Volumes added linearly −0.041*** 0.017** −0.002
(0.001) (0.006) (0.002)

Lagged inventory added −0.039*** 0.014*** −0.021***
(0.002) (0.003) (0.002)

Inter-dealer turnover added −0.043*** 0.008*** −0.009***
(0.001) (0.002) (0.002)

C. Different 2nd stage

PCs extracted from initial obs. −0.042*** 0.009*** −0.004**
(0.002) (0.002) (0.002)

Weighted observations −0.044*** 0.006*** −0.001
(0.001) (0.001) (0.001)

Vlm. correlation controls −0.042*** 0.008*** −0.006***
(0.001) (0.001) (0.002)

Each line in the table shows loadings on the information asymmetry index PCbond in fixed-effects models for the cross-section of
volume-return coefficients 𝛽1, 𝛽2, and 𝛽3. Fixed effects are bond credit ratings. Standard errors (in parentheses) are rating-clustered.
The details for each robustness test are presented in Section 7. ***, **, and * indicate statistical significance at the 1%, 5%, and
10% levels, respectively.

• Control for volume persistence in the second-stage model. Time-series correlation in trading volume might lead to amplification
of price impacts and generate a relation between volumes and future returns similar to one of the asymmetric information
and returns.21 I control for this alternative explanation by including the first autocorrelations of 𝑉 (𝑐)

𝑡 and 𝑉 (𝑠)
𝑡 (averages for

individual bonds) in the second-stage model.

Table 9 presents the results of these robustness tests. Each coefficient in the table represents the estimated loading on PCbond
ithin the fixed effects models for the respective 𝛽𝑖. In column (1), it is evident that 𝛽1 remains significantly negative across all
lternative specifications, with minimal changes in effect size, except when market returns are included in the first stage. The same
pplies to 𝛽2. Here, the effect size varies more across specifications (ranging from 0.004 to 0.049, compared to the baseline estimate
f 0.010), but the loading on PCbond remains significantly positive. The results in column (3) show that 𝛽3 either exhibits a negative
ependence on information asymmetry or lacks a significant association, except in cases where either CtC volumes are proxied by
hort-window roundtrip trades or retail-sized trades are removed. In such cases, despite the sample zooming into the most liquid
nd actively traded bonds, 𝛽2 is several times more sensitive to the information asymmetry index than 𝛽3. This is also in line with
he explanation that CtC volume is more likely to be informed. Overall, these robustness tests support the main finding.

Additionally, I re-estimate the baseline empirical model (Table 5 with PCbond) across different sample splits. Table A9 in the
nternet Appendix shows that the results hold both in the investment-grade (IG) and the high-yield (HY) subsamples. Notably, the
ffects appear to be stronger for HY bonds, which are likely more information-sensitive than the IG bonds. Furthermore, as shown
n Table A10 in the Appendix, the results hold consistently across bonds issued by industrial companies and financial firms. This
ndicates that the findings are not driven by industry-specific effects.

21 The average autocorrelation of 𝑉 (𝑐) is relatively low in the data (Table A2 in the Internet Appendix).
17
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Table 10
Performance of the long leg of the corporate bond reversal strategy.

Before T-cost After T-cost (avg. bid–ask) After T-cost (roundtrip)

Mean S.D. SR IR Mean S.D. SR IR Mean S.D. SR IR

(A) Reversal: univariate sort on month 𝑡 − 1 return

Baseline 6.34 6.22 0.94 1.37 0.08 6.17 −0.04 −0.26 −0.31 6.11 −0.10 −0.39
Many funds 5.48 7.16 0.69 0.83 −1.06 7.14 −0.20 −0.44 −0.95 7.08 −0.18 −0.43
Few funds 7.32 5.54 1.23 1.97 1.16 5.45 0.15 0.07 0.27 5.37 −0.02 −0.26
Big issuers 6.14 6.15 0.93 1.13 −0.36 6.10 −0.12 −0.34 −0.52 6.00 −0.13 −0.39
Small issuers 7.40 7.07 0.99 1.32 1.17 6.96 0.14 0.05 0.55 6.91 0.04 −0.10
Inv. grade 7.22 5.60 1.23 1.72 0.87 5.49 0.11 −0.03 0.36 5.37 0.02 −0.21
High yield 6.96 10.40 0.65 0.63 0.58 10.34 0.06 −0.05 0.80 10.35 0.07 −0.02

(B) Reversal: bi-variate sort on month 𝑡 − 1 return and rating

Baseline 7.43 6.11 1.15 1.77 1.06 6.03 0.14 0.03 0.60 5.93 0.06 −0.12
Many funds 6.71 7.06 0.90 1.16 0.11 6.96 −0.02 −0.20 0.05 6.86 −0.02 −0.22
Few funds 8.56 6.00 1.35 2.01 2.26 5.91 0.35 0.38 1.30 5.79 0.18 0.10
Big issuers 6.87 6.86 0.95 1.19 0.39 6.80 0.02 −0.13 0.08 6.69 −0.01 −0.21
Small issuers 8.32 6.12 1.30 1.91 1.98 6.00 0.29 0.30 1.35 5.92 0.19 0.11
Inv. grade 7.60 5.87 1.24 1.73 1.19 5.77 0.17 0.07 0.59 5.64 0.07 −0.12
High yield 8.01 10.06 0.78 0.79 1.67 10.01 0.18 0.09 1.91 10.02 0.19 0.12

The investment universe is restricted to bonds whose previous month’s outstanding amount exceeds $200 mn and whose previous month’s realized bid–ask
spread (12-month backward-looking moving average) is below 100 bps. The rebalancing is monthly. In Panel A, value-weighted portfolios consist of bonds from
the bottom quintile of the month 𝑡 − 1 cross-sectional return distribution. In Panel B, reversal signals are extracted by independently double-sorting bonds on
he month 𝑡 − 1 credit rating (terciles) and total return (quintiles). Within each of the 15 resulting bins, the value-weighted portfolio is constructed. The long
eg of such a double-sorted reversal strategy is the equally-weighted (across three rating terciles) portfolio of the bottom-return-quintile portfolios. The first four
olumns are performance characteristics without transaction cost adjustment. The middle four columns assume that the transaction cost is half of the realized
id–ask spread. The last four columns employ the roundtrip cost measure of Feldhütter (2012) as the T-cost. In columns, the mean is a sample average of
onthly returns, in % per annum. S.D. is the standard deviation of monthly returns, in % per annum. SR is the Sharpe ratio relative to the 3-month Treasury

ill. IR is the information ratio relative to the market portfolio, which is the value-weighted return of the bonds in the universe. The sample runs from Jan.
006 to Dec. 2018.

. Implications for investment strategies

In this section, I show that the short-term reversal strategy earns more if the likelihood of information trading is taken into
ccount in portfolio formation. I exploit my result that price reversals depend on the extent of bond information asymmetry.

I start by constructing reversal portfolios with univariate and bivariate sorts at a monthly rebalancing frequency. Adopting a
imilar approach to that of Chordia et al. (2017), I obtain the univariate reversal signal by sorting bonds on the previous month’s
otal return (here, quintiles). Meanwhile, the bivariate reversal signal, which is obtained using a similar method to that of Dickerson
t al. (2023) and the earlier literature, involves the double sorting of bonds on the previous month’s credit rating and return (terciles
nd quintiles, respectively). The investment universe for this analysis encompasses all corporate bonds with an outstanding amount
f at least $200 million and a 12-month backward-looking average of the realized bid–ask spread of at most 100 bps The latter
elps to reduce the transaction cost of the reversal strategy, which is usually very high due to high portfolio turnover. Here, I do
ot restrict the bond sample to active periods and do not remove the crossing of the IG/HY threshold as above, as to do so would
ntroduce a look-ahead bias.

In this analysis, I only consider the long leg of the reversal strategy. For the univariate sorting, this is the value-weighted portfolio
f bonds in the bottom quintile of the month 𝑡 − 1 cross-sectional return distribution (i.e., the portfolio of past losers). For the
ivariate sorting, the long leg is the union of value-weighted bottom-return-quintile portfolios across three rating terciles (i.e., the
ortfolio of past losers in which each credit rating tercile is represented equally). I do not consider a short leg of the reversal strategy
ere because, in my sample, shorting top-performing corporate bonds was not profitable. I investigate this matter in more detail
n Ivashchenko and Kosowski (2023). Furthermore, there is little public historical information on the cost of shorting (borrowing)
orporate bonds. Regarding the long leg, I account for the explicit part of the transaction cost at the backward-looking realized
id–ask spread level or with the Feldhütter (2012) imputed roundtrip cost (IRC). Schestag et al. (2016) suggest that these metrics,
mong many others, are effective at measuring explicit execution costs. Additionally, Ivashchenko and Kosowski (2023) propose a
ethod to evaluate implicit bond trading cost (market impact) and further derive capacity limits for several systematic strategies,

ncluding the reversal portfolios considered here.
In addition to (the long legs of) baseline reversal portfolios, I consider a few of their sub-portfolios. The first split divides the

ortfolios into investment-grade and high-yield credit classes. The second split is based on the number of mutual fund bondholders
below- and above-median) six months before the sorting date. The third split, which applies only to bonds issued by public firms,
s based on issuer market capitalization (also below- and above-median). Within these splits, the information asymmetry in the
ortfolios of high-yield bonds, bonds with fewer institutional investors, and bonds issued by smaller firms is supposedly higher than
n the portfolios of, respectively, investment-grade bonds, bonds with more institutional investors, and bonds issued by large firms.

Table 10 shows the performance of reversal portfolios. Between 2006 and 2018, the average return of the long leg of baseline
eversal portfolios was 6.3% per year for the univariate reversal signal and 7.4% for the bivariate signal before accounting for
18



Journal of Financial Markets 68 (2024) 100880A. Ivashchenko

p
H
b
a

trading cost adjustment. Across all sub-portfolios, the bivariate signal performed better than the univariate one. Within pairs of sub-
portfolios, the ones with more information asymmetry generally performed better.22 For instance, the bivariate reversal portfolio
with many fund owners earned approximately 6.7% per year, while the portfolio with few fund owners earned around 8.5%. The
volatility of the sub-portfolio with few fund owners was also lower, resulting in superior risk-adjusted performance for the reversal
strategy, particularly in bonds with higher levels of information asymmetry. Before T-cost adjustment, reversal portfolios outperform
the market on a risk-adjusted basis, as suggested by the information ratios.

Once I account for transaction costs, the performance of reversal portfolios becomes considerably worse because of high portfolio
turnover. The reversal signal is short-lived: one must replace approximately 85% of portfolio holdings each month. For baseline
portfolios in Table 10, transaction costs comprise around 6.3–6.6 p.p. of the average gross return. Between the two T-cost proxies,
the IRC is a more conservative adjustment method across the board (except for HY sub-portfolios). Focusing on ex-IRC performance
characteristics, I find that sub-portfolios with higher information asymmetry still earn positive risk-adjusted net returns. In a
previously discussed pair of portfolios with few and many institutional investors, the former earns on average 1.25 p.p. more than
the latter after IRC adjustment. The return on the reversal portfolio with many fund owners is effectively zero after trading cost
adjustment. Remarkably, all sub-portfolios with higher information asymmetry yield very similar ex-cost Sharpe ratios of 0.18–0.19
and information ratios (relative to the market portfolio) of 0.10–0.12.

The evidence suggests that conditioning on ex-ante information asymmetry has a considerable impact on the performance
of reversal strategies in practice. Reversals tend to be stronger for bonds with more information asymmetry. Long-only reversal
portfolios of bonds with limited mutual fund ownership or consisting of bonds issued by smaller firms outperform the corporate
bond market on a risk-adjusted basis even after trading costs are accounted for. Given these findings, one can further investigate
different information asymmetry signals and improve the performance of a corporate bond reversal strategy.

9. Conclusion

In this paper, I estimate individual corporate bond return autocorrelation as a linear function of the trading volume and explore
the determinants of the estimated relation in the cross-section of TRACE bonds. My analysis focuses on the impact of information
asymmetry on the volume-reversal offset, which refers to the difference in bond price reversals between high- and low-volume days.

In the cross-section of bonds, I can expect the volume-reversal offset to increase with the underlying bond information asymmetry
when trading is occasionally driven by private information. By contrast, when trades are uninformed, there should be no such
dependence. I use this prediction to identify the informational content of trading volumes attributed to either dealer or client liquidity
provision.

I find that bonds with higher information asymmetry exhibit more substantial volume-reversal offsets when dealers’ inventory
remains stable, client purchases equal client sales, and bond investors are, in fact, liquidity providers. However, the opposite becomes
true when dealers supply liquidity and trading volumes mirror dealers’ bond inventory changes. In this scenario, the volume-reversal
offset either decreases in or does not depend on information asymmetry. Notably, this result becomes more pronounced when
informational motives for trading are more acute, such as before earnings announcements.

These results suggest that the informational content of bond prices is higher when investors, rather than intermediating dealers,
supply liquidity to the corporate bond market. Since OTC dealers typically know their clients well and might detect informed traders,
the dealers let other investors supply liquidity for informed trades. As a result, dealers and non-dealer liquidity providers experience
different levels of exposure to adverse selection risk in the U.S. corporate bond market. These insights also have implications for
the development of investment strategies that aim to capitalize on corporate bond price reversals.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.finmar.2023.100880.

22 The exception is the pair of IG and HY univariate reversal portfolios. Here, the IG outperforms the HY. Note too that univariate IG and HY reversal
ortfolios have an average return that is higher than the baseline univariate reversal portfolio [sic]. Each month, the baseline return is between the IG and the
Y components, as it must be. However, the relative weight of the HY portfolio in the baseline increases almost four times in the GFC period amid multiple
ond downgrades, which occurs when the HY reversal portfolio suffers substantial losses. In other words, the baseline portfolio ‘‘overweights’’ the HY component
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t the worst possible time. As a result, the average baseline return is below the average returns of its two components. Post-GFC, there is no such phenomenon.
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